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1.0 INTRODUCTION

The surface burst ground motion environment is considered to consist of
components associated with the local airslap loading and with the upstream
loading, including the upstream airblast and direct coupling of energy near
ground zero, as is shown in Figure 1. Close-in, the direct coupling of
energy has a significant effect on the upstream-induced component and re-
sults in a large displacement low frequency response. At long range (i.e.,
low overpressure) from a nuclear detonation, the upstream-induced environment
is a low frequency oscillatory surface wave, termed ground roll. The airslap-

induced component is generally a higher frequency response.

Nuclear data in the outrunning region, including characteristic wave-
forms, were summarized by Sauer [1964]. This work formed the basis for
outrunning motion predictions in the Air Force Design Manual [Crawford,
et al., 1974}. During the Army Site Defense Programs, which considered low
overpressure design environments, the ground roll environment was studied
extensively by the Waterways Experiment Station (WES) [Joachim 1973; Hadala
1973]. These efforts concentrated primarily on the surface tangent high
explosive events performed at the Defense Research Establishment, Suffield
(DRES) and were the basis for development of a WES computer program for pre-
diction of ground motion environments. Analyses of the ground roll environ-
ment for several subsequent high explosive events were performed by Higgins
and Schreyer [1975]. Additional studies of the nuclear data were performed
by Cooper [1972) and by Lipner, et al. [1975].

The single burst ground roll environment is important to the prediction
of the multiple burst environment for MX. Recent studies carried out under
the planning and review of the DNA-sponsored Data Analysis Working Group
(DAWG) have led to an improved understanding of the phenomenology of the
upstream-induced environment component for both the outrunning and super-
seismic regions. While the process of developing prediction techniques is
still evolving, the purpose of this study is to perform an evaluation of the
current methodology. This report summarizes preliminary results of this

evaluation.
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2.0 GROUND MOTION DEFINITIONS

An approach to analysis of ground motions is to separate the response
into individual components. Even though there are nonlinear interactions
between components which do not allow for such separation on a mathemati-
cally precise basis, it is a useful engineering approach because the result-
ing errors are well within the overall uncertainties of the problem and it

is then possible to account for each part of the motion.
2.1 GROUND SHOCK COMPONENTS

When the airblast is superseismic, i.e., the shock-front velocity is
traveling faster than the compressive stress wave speed in the layer, the
initial ground shock response will be caused by the airblast in the immediate
vicinity of the point of intercst. This ground shock component 1s termed

airslap-induced (Figure 1).

At the interface between the two geologic layers, some of the energy
of the incident airslap-induced wave is reflected back into the upper layer
and some is transmitted into the lower layer. As the airblast shock-front
velocity slows, a refracted wave in the lower stiffer layer begins to outrun
the airslap-induced ground shock and drive a head wave into the upper layer.
Surface outrunning occurs beyond the range where the head wave arrives at

the surface before the airblast.

Ground shock associat 'd with all sources other than the locsl airblast
(including directly coupled energy and upstream airblast) is termed upstream-
induced ground shock {V4 Working Group, 1980]. Thus, this definition includes
both effects generated by the energy coupled at the burst point and effects

from upstream airblast loading.
2.2 UPSTREAM-INDUCED WAVEFORM PREDICTION

The prediction equations for this waveform component, as recommended
by the DAWG [1978], are provided in Appendix A. The waveform is a series
of exponentially decaying trigonometric functions, as shown in Figure 2.
Two parameters are required to completely define the vertical and horizontal
ground motion histories: the peak velocity (vertical and horizontal values

are taken to be equal) and the period of horizontal motion. In the close-in
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region, the period is adjusted consistent with the large displacements

associated with direct-induced effects.

The prediction of peak velocity is site independent, excupt within a
region which is near or contains the outrunning range. This region has a
constant peak velocity (thus is termed the plateau region) dependent on the
depth to rock (H). The peak velocity prediction here is given by
0.75 fps [1000 fe/H]1/3,

The primary response period [Murphy, Bennett 1980} is 2H/CSl (CSl is
the depth~weighted-average shear wave speed of the soil above the rock),
except when this results in a horizontal displacement less than the Cooper
crater volume scaling prediction of O.ASVZ’/B/R3 (V is the apparent crater
volume and R is the range from the weapon). The horizontal displacement is
then forced to be equal to this value by increasing the period. Vertical
and horizontal displacements are slightly different close-in, however, at

long range both have identical waveforms.

The basis for development of this waveform is as follows:

DAWG Waveform Parameter Basis
Peak velocity at WES analysis of high explosive
close-in ranges data [DAWG 1978]
Peak velocity in Finite element computer code
plateau region calculations for various

depths to rock [Sandler 1978]

Peak velocity at Analysis of nuclear data

long range [Lipner, et al., 1975]
Surface wave Elastic surface wave analysis
period [Auld and Murphy 1979]
Arrival time Seismic calculation using

shear wave speeds of the media




3.0 DAWG UPSTREAM-INDUCED WAVEFORM EVALUATION

The development of the DAWG waveform involved an extension of work per- 1
formed by WES for the Army Site Defense studies. While the WES work was
based largely on data from the DRES high explosive events (e.g. PRAIRIE FLAT
and DIAL PACK), the more recent analyses within the DAWG have focused more
on Event 6 from the PRE-MINE THROW IV series and on PRE-DICE THROW II, Events
1 and 2. To provide an evaluation of the waveform for a different geolocgy,

the 100 ton MIDDLE GUST I1I and IV events were considered in this study.

Since computer code calculations have been gaining increased credibility
in predicting ground motions, through studies of the PRE-MINE THROW IV and

PRE-DICE THROW II events, comparisons with finite difference nuclear calcu-

lations were also performed in this evaluation of the DAWG waveform. These
calculations [Sandler 1978] considered a 1 MT surface burst airblast loading

on two MX-related geologies, with depths to rock of 600 and 1000 ft.
3.1 PEAK VELOCITY PREDICTIONS

The high explosive data base that WES used to develop the peak velocity
prediction, for the DAWG waveform, at close-in ranges is shown in Figures 3
and 4 along with the nuclear prediction curves. 1In their studies, WES used
an equivalent yield factor of one-half in analysis of high explosive data
for purposes of nuclear predictions. The horizontal velocity data do not
have very large variations over a large range of geologies and the prediction
curve is slightly above the median of the data., The vertical velocity data
exhibit scatter that ranges - from top to bottom - from factors of about 3.5
to 7, with the prediction nearer the median of the data. The PRE-MINE THROW
event was conducted in a relatively homogeneous geology with a large depth
to water table and rock. Close-in vertical velocity data for this event are
near the bottom of the scatter. Data for the DRES events, conducted in a
seology with about a 23-ft depth to water table, generally tend to be above
the close-in prediction line. This difference may be associated with the
fact that the layering Iin the Suffield events result in upstream-induced
head waves which propagate npward from the water table into the overlying
drv soil., Becausc »f the impedance mismatch between the wet and drv soil
materials, the compression head waves have a fairly shallow wave front angle.

Thus, if the primarv response is in this wave the vertical velocity would be

10
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larger than the horizontal. Because of the more uniform PRE-MINE THROW

geology, significant head waves would not develop.

To use a basis for quantification of uncertainties in the high explosive
data and to study test events individually, a regression analysis of peak
horizontal velocity data was performed. This analysis included all strong
motion data, for several events, in the vicinity of the 1.5 ft depth. Cal-
culations were first performed for all gage ranges and then for only those
ranges within the outrunning radius, RO. A direct evaluation of the close-
in prediction could be made from the superseismic results. An additional
source of uncertainty is in the equivalent yield factor, which was not

evaluated in this study.

The regression analysis was a least square fit to the equation

R -n
v, = A - (1)
H [w1/3]

with the results shown in Table 1. In addition, those data in the 2.5%
extremes on both sides of the distribution were dropped and the regression
analysis repeated (these results are given in the second row corresponding
to a test event). However, the only value of this information is to show
the impact of data at the extremes - any data that are actually dropped
should be excluded only as a result of evidence which shows that they are
not correct. Also shown in the table are (a) regression analysis velocity
prediction (vl) for a scaled range corresponding to approximately 600 psi
overpressure, and (b) 90% K-Factors (factors which multiply and divide the

median prediction to encompass 90% of the data; 5% left off on each end).

Except for MIXED COMPANY 3, the regression analysis results for each
event were in good agreement with the DAWG prediction. However, there were
some systematic differences between the events with shallow rock (MIDDLE
GUST IIT and IV and MIXED COMPANY 3) and with deep rock (PRAIRIE FLAT, DIAL
PACK, DISTANT PLAIN 6, AND PRE-DICE THROW II-1 and 2). The shallow rock

predictions for v, vary from 4.4 to 6.4 fps (average value of 5.1 fps), while

1
the deep rock corresponding values vary from 3.8 to 4.3 fps (average of 3.7
fps). Thus, the horizontal velocities for the shallow rock geologies are

higher bv an average factor of about 1.4. A comparison between the DAWG

13




Table 1. High Explosive Peak Horizontal Velocity Regression Analysis

ALL RANGES SUPERSEI SMIC
TEST Y:ELD Ro A . " -
S I PO LI IO L IR LI A L
PRAIRIE FLAT 500 | ss0 | 880 [1.65 { 5.10 [ 2.0 | 3330 | 2.13 | 4.31 [ 1.49
*1170 [1.74 { 5.12 | 1.64
DIAL PACK 500 | 550 | 800 [1.74 |3.50 | 1.73 | 1400 | 1.95 | 3.38 | 1.82

DISTANT PLAIN 6 | 100 420 | 930 (1.88 [ 2.63 [ 1.88 | 1670 | 1.94 | 3.92 | 1.84
MIDDLE GUST Il 100 230 | 490 |1.49 [ 5.64 | 2.99 1 1150 | 1.7B | 4.44 | 2,60
530 |1.49 | 5.06 | 2.00 | 550 | 1.50 | 5.09 [ 1.98
MIDDLE GUST IV 100 00 | 790 |1.65 | 4.58 | 1.91 | 1820 | 1.92 | 4.54 | 1.90
770 [1.65 | 4.46 | 1.83 11970 | 1.95 | 4.48 | 1.75
MIXED CO 3 500 00 11900 [1.82 | 6.47 | 1.8l 380 | 1.3 | 6.37 ] L.6]
1660 [1.79 | 6.22 | 1.58) 730 [ 1.53 | 6.16 | 1.46
PRE-DICE TH 1=l 100 280 | 530 [1.61 | 3.48 | 2.10 | 5850 | 2.36 | 3.48 | 1.78
5720 | 1.63 | 3.51 | 1.92
PRE-DICE TH 11-2 100 280 | 490 |1.65 [ 2.83 | 2.14] w950 | 2.3 | 3.41 | 1.83
MINERAL ROCK 100 5280 | 2.26 | 4.55 | 1.82

MINE ORE 100 7160 [ 2.38 | 4.24 | 1.86

8550 | 2.43 | 4.33 | 1.63

-
" ‘[“h/w"ﬁ.] v - VH[22.7ﬁ/mn'/3];~¢oo psi

90% K Factors - Factors which multiply and divide the median prediction to encompass 30% of the data

*Whaen second row is | isted, thoss data in the 2.5% extremes on both sides of the distribution were dropped
and the regression analysis repeated.
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horizontal velocity predictions and the data used in this analysis is pro-
vided in Figure 5, with results for the shallow rock geologies shown
separately from those for the soil geologies. Except for the MINERAL ROCK
and MINE ORE events (shown for comparison), all data are from the super-
seismic region. An assumption of the analysis is that this region is
approximately the same as the close-in region. Future studies should also

consider regression analysis of the vertical velocity data.

The upstream-induced velocity prediction at long range was originally
based on vertical velocity data from one nuclear event at the Nevada Test
Site (TUMBLER 1) and one at the Pacific Proving Grounds (IVY MIKE). These
data and nuclear predictions, including two different estimates of the transi-
tion velocity (vp) for IVY MIKE, are shown in Figure 6. The upstream-induced
velocity was taken as the peak value during the non-airslap portion of the
response. The top value 1s the DAWG prediction, while the bottom is a
modification which considers a yield scaled depth to rock, viz.,

1000 ft 1/3 1/3
H MT

v = 0.75 fps —_— W
=075 s |

The need for a modification of this type follows from geometric scaling
rules. This correction, which is not very sensitive to yield, is only a

factor of 1.3 for the 10.4 MT IVY MIKE event.

Horizontal velocity data for several NTS nuclear events are also shown
in Figure 6 along with both predictions for the NTS plateau velocity. (These
predictions considered the Yucca Flat geology, but values for Frenchman Flat
would only differ slightly.) The yield correction makes a difference of a
factor of 2 for 1 kT, which typifies the yields of these NTS events. The
horizontal velocity data are in reasonable agreement with prediction. There
i{s actually better agreement for the uncorrected plateau velocity, but the
data in the plateau repion are from buried bursts (JANGLE U and JOHNIE BOY).
Therefore, a definitive conclucion regarding the plateau velocity cannot be

reached.

Some of the high explosive events had seismic measurements out to rela-
tively long range, including PRAIRIE FLAT, MIDDLE GUST IV, PRE-DICE THROW
II-1, and MISERS BLUFF II-1. These data provide additional evaluation of

the low overpressure predictions. MIDDLE GUST IV data (using a factor of

15
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two HE/NE equivalence), shown in Figure 7, are substantially larger (factor
of 5 or greater) than the prediction. In addition, there was a late-time
dominant high frequency (order of 5 Hz) response at the seismic stations,

which propagated outwards at about 1650 fps.

A similar tvpe of response (but lower frequencv, on the order of 1-2
Hz) was observed in the PRE-DICE THROW II event. In that case it was
identified as a fundamental mode Rayleigh wave. However, this does not imply
that MIDDLE GUST IV has a similar phenomenology. To further investigate the
phenomenologyv of this response, elastic surface wave analyses of the MIDDLE
GUST IV event should be performed. These types of calculations proved use-
tul in the investigation of PRE-DICE THROW II-1 and PRE-MINE THROW IV-6
events., Finite difference calculations would also be of value, but the

zoning required to capture the 5 Hz response would be costly.
1.2 WAVEFORM COMPARISON

Comparisons of the DAWG prediction waveform with finite difference
calculations are presented in this section. A summary of the site pro-
perties used in the Weidlinger Associates (WA) calculaticns [Sandler 1978]
and in waveform predictions using the DAWG methodology is presented in
Figure 8. The WA velocity and displacement time history calculational re-
sults are shown in Figure 9 and 10, with DAWG predictions overlayed at select
ranges; while larger scale displacement comparisons are presented in Figures

11 to 17.

The two-dimensional WA calculations simulated airblast loading onlv and
therefore did not account for direct-induced effects. To be consistent with
this, a zero crater volume was used for the DAWG predictions. In comparing
the two results, it should be noted that the WA calculations contain the
complete airhlast-induced response, while the DAWG predictions contain only
upstream airblast-induced effects. Therefore, the predicted displacement
histories were given initial values equal to those obtained from the WA

calculation at the time of arrival of the upstream-induced signal.

The arrival time ot the DAWG waveform is significantly behind that of
the upstream-induced arrival for the WA calculations, because the [irst nup-
stream arrival is calculated from the S-Wave speeds. The prediction should

he revised to reflect a signal corresponding to P-Wave arrivals. A
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modification to the DAWG waveform, currently being considered by Higgins,
Auld and Associates, would divide the upstream-induced response into two
components - one which propagates with S~Wave speeds and another which pro-

pagates with P-Wave speeds.

The DAWG peak velocity predictions are many times larger than WA calcu-
lation values for the higher overpressure ranges, while the oscillatory
period is 2 or more times larger than that of the calculations, resulting
in very large predicted upstream-induced displacements. Below 100 psi, the
peak velocities of the DAWG predictions are much closer to those of the cal-
culations. The oscillatory periods are still approximately a factor of 2
longer than in the calculations. Similar conclusions were obtained for the
displacement comparisons at the larger ranges. These comparisons show peak
displacement and frequency content to vary no more than a factor of 3 at

the 6990 ft range.

Peak displacement comparisons are shown in Figure 18. Also included
in the Figure are peak displacement predictions corresponding to (1) crater
volume scaling (for surface burst crater volumes calculated using the Air
Force Design Manual procedure) in the close-in region, and (2) analysis of
NTS data [Cooper 1972] in the further-out region. The fact that the zero
crater volume DAWG predictions show reasonable agreement with the crater
volume scaling closer-in is purely accidental. It would be expected that
the MX displacements be lower than the NTS line at long range because the
NTS geology and yields correspond to a deeper scaled depth to rock. However,
the DAWG predictions are higher. Additional parametric studies and analysis
of existing calculations are required to better understand the behavior of
the motions from finite element calculations and from the DAWG model and to

explain any inconsistencies with the environments measured at NTS.

The 600 ft depth-to-rock calculations, Case 1, show a higher frequency
of oscillation than for Case 2 (1000 ft to rock) which is reflected in the
DAWG predictions. The initial motion of the vertical predictions is a small
(compared to the peak value) signal downward rather than upward, as would be
expected from a signal traveling within the deeper layers and then propa-
zating up to the surface. The horizontal predictions have an initial motion

outward which is as expected.

30




%
‘00 T T 1 )
i CASE 1 T
1 ROCK AT 600 f+ 1
CRATER VOLUME
SCALING
LJ
10 -
L’ L [ ] 1
®
dH

(in)

i

rCOOPER ANALYSIS
OF NTS DATA

b4
u x x -

— -

¢ DAWG PREDICTION |
FOR ZERO CRATER |
VOLUME

x WA CALCULATION

-

-4

FOR AIRBLAST
LOADING
L H A -
3
0 R(FY) 10

4

100

1 T T T
- CASE 2 .
- ROCK AT 1000 f+
[ ]
o\ '
10 F . -
- 1
dH
(in)
= x —
1+ .
. o ) Ll
10 10

R(ft)

Figure 18. Horizontal Displacement Comparisoa (1 MT)

31




Free fileld velocity and displacement data for MIDDLE GUST III and IV
are presented in Appendix B.

3.3 CLOSE-IN DISPLACEMENT PREDICTION

As previously discussed, crater-volume scaling is used for estimating
the close-in ground motion displacements, based on analysis of results from
nuclear and high explosive test events conducted before 1970. Data from
such diverse geologies as hard rock (MINERAL ROCK and MINLZ ORE) and dry
soil (e.g. PRAIRIE FLAT) were consistent with a single scaling law, although

there was a large scatter in the data about the prediction.

A severe test of the scaling has been the PRE-DICE THROW II-1 and 2
120-T Ammonium Nitrate/Fuel 0il (100-ton TNT equivalent) surface-tangent
events conducted in 1975 in a wet soil geology at White Sands, New Mexico.
These events produced the largest craters for this yield and charge geo-
metry; howéver, the displacements were not correspondingly larger. More
recent analysis that includes these data show that, for geologies of in-
terest to MX, the high explosive data are more consistent with yield scaling
than with crater volume scaling. Regression analysis was performed on peak
horizontal displacement data from most of the 100- and 500-ton surface-
tangent high explosive events [Lipner 1978] with the results shown in Figure
19. Using crater volume scaling, the wet site (MIDDLE GUST III and PRE-DICE
THROW II-1 and 2) events are systematically lower than the dry site events
(PRAIRIE FLAT, DIAL PACK, DISTANT PLAIN 6, MIDDLE GUST IV, MIXED COMPANY 3,
MINERAL ROCK, AND MINE ORE) by approximately a factor of 3. However, wet
and dry site events are consistent with a geology-independent yield scaling
for events in soil geologies with large depth to rock (PRAIRIE FLAT, DIAL
PACK, DISTANT PLAIM 6, and PRE-DICE THROW II-1 and 2). As the depth to rock
becomes shallower, the yield-scaled displacement decreases. Thus, the depth
to rock appears to be more important than the depth to water table, while

the reverse is generally true for crater volume scaling.

Scaling comparisons for nuclear data have also been performed [Lipner
1978]. These comparisons could not meaningfully distinguish between the two
scaling procedures since the nuclear data base {s too tenuous. Because of
this and the fact that the high explosive events in rock are more consistent

with crater volume scaling, the DAWG has not changed to yield scaling.
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However, the material behavior of rock media is different enough from soil

media that the same scaling need not apply to both.
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4.0 SUMMARY

The following is a summary of conclusions and recommendations regarding
the upstream-induced ground motion component, based on the preliminary

evaluation in this report:

ta) While the close-in high explosive hcrizontal velocitv data have
1 relativelv small geology sensitivity, there are systematic differences
hetween results from events with shallow rock and with deep rock; horizontal
selocities for shallow rock geologies being higher bv an average {actor of
1ibout 1.+, based on regression analvsis results. However, the DAWG pre-

Jiction 1s consistent with the data for geologies relevant to MX.

th)y  The close-in high explosive vertical velocitv data exhibit larger
variation with geology than do the horizontal. The largest velocities
ippear to correspond to lavered gpeologies with a large impedance mismatch.
This mav be associated with the fact that the head wave front propagating
into the surtace laver, tor such a geology, has a shallow angle and, there-

tore, a large vertical component. Regression analysis of these data and

“urther analvsis of the phenomenology should also be performed.

(¢) The factor of two energy equivalence used to relate high explosive
peak velocities to nuclear predictions was not evaluated in this study.
However, there are few nuclear data points on which such an equivalence can
he hased for the close-in region. This should be evaluated further in con-

iunction with DNA activities related to HE/NE equivalence issues.

(1) The plateau velocity in the DAWG prediction is directlv a function
of rhe Jepth to rock onlv., Geometric scaling considerations sugzgest that a

“leld-scaled depth to rock should be used. Finite difference computer code

“asvsdations should bhe performed to further evaluate this scaling.

n the outrunning region, the MIDDLE 737 IV data are substantialle

CArcer o ractor of 5o oor areater) than the prediction.  In this event, there

was 0 cate time. Cdominant dgh freguency response on the order ot 5 iz oat
cme o the sedsmic statlons. Tlastic sarface wave anaivsis osbould he poer-
rmed U tarther {nvestisate thils response.
o The apstrean-induced sionals have arrival imes correspondine ot
Swave speeds i the PAWG prediocdon, whiile test o fata oand tinite olemen




calculations have initial upstream arrivals corresponding to P-Wave speeds.
Furthermore, the predicted initial vertical motion is downward, while an

initial upward upstream-induced response would be expected. A modification
toe the prediction to correct these problems is currently being developed by

Higgins, Auld and Associates.

(g) Comparisons between WA finite element calculations and corres-
ponding DAWG predictions show the DAWG displacements to be about a factor
of 3 greater in the outrunning region, with an even larger difference close-
in. Additional parametric analvsis studies and analyvsis of existing calcu-

lations are required to better understand the DAWG model and to explain any

",

differences with the environments measured at NTS.

{(h) The high explosive data are more consistent with yield scaling

than with crater volume scaling, for wet and dry soll geologies of interest
to MX., The vield-scaled displacements, for the events analyzed, would appear
to have a coefficient dependent on the depth to rock (and probably other
parameters), Lut not on the depth to water table. DNA studies on HE/NE
equivalence should address the issue of how to use the high explosive data

base for prediction of close-in nuclear dispiacements.

(i) Other general recommendations are: (1) regression analyses are
helpful in identifving event-to-event variations and DNA should support
establishing a credible data base from which such analyses could be per-
formed, (2) analvsis of calculational results in a manner similar to that
performed for test data is useful for determining the scaling implied by
the calculations, and (3) pertorming calculational studies of high explosive
events is about the best approach tu developing predictions with reasonable

conf idence for a wide varietv of geologies.
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AN
APPENDIY A
PAWG PREDICTION WAVEFORM EQUATTONS
e DAWG prediction waverorm Is presented in e roL L owing
couaticns ene with input requirements,
v 1
V1T oTHL Voas Vo
VO H3
— ‘ At — 1
r.t - t t L. t. + ¢t
J L2 52 3 + b U max
H2

INPUT REOUIREMENTS @

'.{' = '{icld
R = Ranuge
i = Depth to Rock

= Averiase Shear wave Speed above Rock
C.., = »hear wWave Speed of Rock
CRAVTOL = Crater Volume

Vo= Peax Velocity (from Flgure 3)
LE
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WAVEFORM FQUATIONS

VERTICAL HORIZONTAL
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DV DH
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W AR DAY 20832V = - + -
‘ ' Dpg " Pyt = ©) F Dypltapy - 0)
SINTGL . ( N -
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EQUATION CONSTANTS
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APPENDIX B
MIDDLE GUST II1 AND IV DATA
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Figure Bl. Middle Gust III Veloeity Time History Data, 150°, 1.5 ft Depth
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Middle Gust III Displacement Time History Data, 150°, 1.5 ft Depth
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Figure B3. Middle Gust III Veloeity Time History Data, 240”, 1.5 ft Depth
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Middle Gust III Displacement Time
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History Data, 240°, 1.5 ft Depth
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Middle Gust IV Velocity Time History Data, 60°, 1.5 ft Depth
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Figure 36, Middle Cust IV Strong Motion Seismic Velocity Time History Data, 60
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Fisure B7. Middle Gust IV Displacement Time History Data, 60°, 1.5 ft Depth
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